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A B S T R A C T

Individual diet specialization, where individuals within a population exhibit distinct dietary patterns, can be
influenced by shifts in ecological opportunity. One underexplored avenue of research is in investigating whether
individuals switch foraging strategies (e.g., shifting from herbivory to frugivory) when ecological opportunity
provides a pulse of limiting resources, such as fleshy fruits. This study investigates the influence of seasonal
frugivory on diet consistency and specialization among generalist herbivores, specifically the gopher tortoise
(Gopherus polyphemus), in southeastern Florida, USA. We hypothesized that increased frugivory during the wet
season (June through November), coinciding with a resource pulse of fleshy fruits, leads to more inconsistent and
specialized diets. Using radio telemetry to track individual tortoises and analyzing dissected fecal samples
grouped into functional food categories, we applied Bayesian hierarchical modeling to examine diet consistency
and specialization. Our results indicated that higher frugivory levels in the wet season correlate with greater diet
inconsistency and specialization compared to the dry season. This pattern suggests that gopher tortoises may
switch foraging strategies to exploit seasonal resource pulses of fleshy fruit, thus adopting more inconsistent and
specialized diets. Additionally, important activities in the life history of the gopher tortoise, such as copulation,
home range defense, and burrow construction, coincide with periods of increased fruit consumption and dietary
inconsistency/specialization. Increased intake of carbohydrates and digestible energy from fleshy fruits may
allow for more time in the tortoise's activity budget for these activities. Finally, by elucidating the relationship
between seasonal frugivory and diet consistency/specialization, this research enhances our understanding of the
mechanisms shaping ecological dynamics at the intraspecific level which can subsequently influence community-
level interactions such as animal-mediated seed dispersal.

1. Introduction

Frugivory is a foraging strategy employed by diverse fauna which
plays a critical role in maintaining biodiversity and ecosystem services
(Jordano, 2000; Herrera, 2002; Bello et al., 2015). This foraging strategy
involves the consumption of fruits and depending on the consumer, can
vary in intensity and outcomes for seed dispersal (Marques Dracxler and
Kissling, 2022; van Leeuwen et al., 2022). Beyond a simple foraging

strategy, frugivory constitutes a crucial ecological interaction where
animals meet their energetic and nutritional needs while plants receive
dispersal services for their seeds (Jordano, 2000; Herrera, 2002; Jordano
et al., 2011; Traveset et al., 2014). However, fruits are a spatiotempo-
rally limited resource, available only in pulses dictated by flowering and
fruiting phenology. Often, these resource pulses are aligned with sea-
sonal environmental factors such as day-length, temperature, and pre-
cipitation (Mendoza et al., 2017; Cortés-Flores et al., 2019; Abrahms

* Corresponding author at: Department of Widlife Ecology and Conservation, University of Florida, Gainesville, FL, USA.
E-mail address: adrian721@ufl.edu (A. Figueroa).

1 Senior co-authorship

Contents lists available at ScienceDirect

Food Webs

journal homepage: www.elsevier.com/locate/fooweb

https://doi.org/10.1016/j.fooweb.2024.e00356
Received 26 April 2024; Received in revised form 20 June 2024; Accepted 1 August 2024

mailto:adrian721@ufl.edu
www.sciencedirect.com/science/journal/23522496
https://www.elsevier.com/locate/fooweb
https://doi.org/10.1016/j.fooweb.2024.e00356
https://doi.org/10.1016/j.fooweb.2024.e00356
https://doi.org/10.1016/j.fooweb.2024.e00356


Food Webs 40 (2024) e00356

2

et al., 2021). Understanding how temporal patterns of frugivory influ-
ence ecological phenomena is crucial for advancing ecological theory
and informing conservation strategies.
While some animals consume fruit year-round, others become more

frugivorous by following seasonal resource pulses (Remis, 1997; Koike
et al., 2008). In fact, the movement patterns of these seasonal frugivores
may change to track the availability of fleshy fruit (Abrahms et al., 2021;
Robira et al., 2023). While increasing their fruit consumption during
periods of increased availability, seasonal frugivores may diverge from
conspecifics in their resource use patterns (Fuh et al., 2022), which
could be explained by interindividual diet variation (Araújo et al.,
2011). Interindividual diet variation, also known as individual special-
ization, is when individuals diverge in their resource use patterns when
compared to their population. Individual specialization can be caused by
a variety of drivers that include competition, predation, and ecological
opportunity (Bolnick et al., 2007; Araújo et al., 2011). Ecological op-
portunity can result from increased resource availability due to intra-
annual resource pulses, such as those resulting from seasonal fruiting
phenology (Bancroft et al., 2000; Redwine et al., 2007; Gerardo Herrera
et al., 2008).
In some species, as resource diversity increases, so does the degree of

diet specialization among individuals (Balme et al., 2020). Seasonal
frugivory could lead to either lower or higher interindividual diet
variation. For example, if all individuals switch to a highly profitable
seasonally available resource (Schoener, 1986), diet variation should
decrease. On the other hand, depending on the seasonally available re-
sources and the tradeoffs involved in their consumption, the seasonal
addition of fruits to an individual's diet might be accomplished by higher
diet variation, which has received empirical support. In the case of the
Egyptian fruit bat (Rousettus aegyptiacus), individual diets tend to exhibit
greater specialization when there is an increase in fruit availability
(Gerardo et al., 2008).
Gopher tortoises (Gopherus polyphemus) –widely recognized for their

proclivity to create burrows that support over 350 commensal species
(Diemer, 1986; Lips, 1991; Dziadzio and Smith, 2016; Melanson, 2021)
– are primarily herbivorous (MacDonald and Mushinsky, 1988; Mush-
insky et al., 2003). This species is a generalist consumer known to forage
on upwards of 1000 plant species across its range (Ashton and Ashton,
2008), and although an efficient herbivore (Bjorndal, 1987), the gopher
tortoise also engages in frugivory – acting as a prolific seed disperser
(Carlson et al. 2003; Birkhead et al. 2005; Hanish 2018; Richardson and
Stiling 2019; Figueroa et al. 2021). On occasion, this species will also
scavenge, engage in coprophagy, and consume rocks and shells as gas-
troliths (Moore and Dornburg, 2014; Yuan et al., 2015). Due to its broad
diet, this species is an ideal model for investigating individual variation
in resource-use patterns, particularly in the floristically diverse pine
rockland ecosystem of southeastern Florida (Trotta et al., 2018), a re-
gion where plant communities experience seasonal pulses of fleshy fruit
production (Bancroft et al., 2000; Redwine et al., 2007).
In this study, we quantify patterns of individual diet consistency and

specialization among conspecific gopher tortoises and investigate
whether these patterns vary seasonally. We also explore whether vari-
ability in diet consistency and specialization is linked to seasonality and
the consumption of fleshy fruits (i.e., frugivory). Given the wide niche
breadth of our study species, the gopher tortoise (Ashton and Ashton,
2008), we hypothesize that there are marked differences in how
specialized individual diets are. We further anticipate that in periods
with greater fleshy fruit availability – such as the rainy season in south
Florida (Lodge, 2017; Flora of North America Editorial Committee, eds.
1993+, 2023) – there will be greater diet specialization due to increased
frugivory. Finally, we expect that as the amount of fruit consumption
increases, so will the degree of diet specialization as has been found in
previous studies on frugivory and diet specialization (Gerardo et al.,
2008; Fuh et al., 2022).

2. Materials and methods

2.1. Site description

This study took place in Miami-Dade County, Florida, USA, in the
globally imperiled pine rockland ecosystem (USFWS, 1999, Florida
Natural Areas Inventory, 2010, World Wildlife Fund, 2014). Specif-
ically, this work was conducted at an 830-ha complex of properties
known as The Richmond Tract (Possley et al., 2020; Figueroa et al.,
2023), in the rocklands surrounding Zoo Miami which serves as critical
habitat for numerous endemic and federally listed species, as well as the
population of gopher tortoises under study here (Possley et al., 2018;
Whitfield et al., 2018, 2022; Figueroa et al., 2021). Southern Florida,
where the pine rockland forests are located, has a subtropical climate
where seasonal fluctuations in temperature are less pronounced than
that of rainfall (Snyder et al., 1990; Lodge, 2017). Here, summer and fall
are considered the wet season (June to November) and winter and
spring the dry season (December to May) (Snyder et al., 1990; Lodge,
2017). As a result, the phenology of many plants in this community
coincides with these seasonal changes in precipitation (Flora of North
America Editorial Committee, eds. 1993+, 2023).
The pine rockland is the most floristically diverse ecosystem in

southern Florida, containing over 430 plant species (Trotta et al., 2018),
many of which are endemic to this region and ecosystem type. Its biotic
community represents the confluence of temperate species at the
southern extent of their geographic range and neotropical species at the
northern extent of theirs. This ecosystem is fire-maintained and char-
acterized by its scant, savanna-like canopy of endemic south Florida
slash pine (Pinus elliottii var. densa), midstory of palms and shrubs, and
understory of endemic, fire-dependent herbs such as Florida brickell-
bush (Brickellia mosieri), Carter's small-flowered flax (Linum carteri car-
teri), and deltoid spurge (Euphorbia deltoidea ssp. deltoidea) (Diamond
and Heinen 2016; Possley et al. 2008). In addition to the diversity of
plants they contain, pine rocklands provide habitat for a longtime
inhabitant of this ecosystem that persists in remnant preserves to this
day, the gopher tortoise (Simpson, 1920; Carr, 1940; Monroe, 1943;
Enge et al., 2004; Whitfield et al., 2018, 2022; Figueroa et al., 2021).

2.2. Study species

The gopher tortoise is the only native tortoise found east of the
Mississippi and Tombigbee rivers (Auffenberg and Franz, 1982), and has
been documented as far southeast as Miami, Florida by early home-
steaders (Simpson, 1920; Monroe, 1943), and at Cape Sable in the 1980s
– which is at the southwestern tip of the Florida peninsula (Kushlan and
Mazzotti, 1984; Waddle et al., 2006). The tortoises at our study site have
been the subject of multiple studies regarding ecology and conservation
(Whitfield et al., 2018, 2022; Figueroa et al., 2021), and are found in
three disjunct spatial aggregations which we refer to as the East, South
and West sites (Fig. 1). These aggregations of tortoises are due to a
combination of the species' social behavior (Guyer et al., 2012), as well
as the geology of this ecosystem which can limit the availability of deep
sandy soils that facilitate burrowing (Hoffmeister et al., 1967; Whitfield
et al., 2022). During the study, no tortoises migrated from one of these
aggregations to another, so each site has a perfectly nested subset of
individuals that occupy it.
Vegetatively, the plant communities in the West, South, and East

sites are very similar where they fall within the pine rockland footprint.
However, half of the burrows in the East aggregation were surrounded
by invasive plant species such as Burma reed (Neyraudia reynaudiana),
showy rattlebox (Crotalaria spectabilis), shrub verbena (Lantana camara),
and bitter melon (Momordica charantia) just outside the pine rockland
footprint (Fig. 1). Although there are contrasts in the plant communities
inside and outside the pine rockland footprint, our estimates of indi-
vidual diet specialization are calculated across the entire population of
tortoises over the whole study period, thereby incorporating both spatial
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and temporal differences in diet specialization into our population
estimate.

2.3. Study design

2.3.1. Scat collection/dissection
This study was carried out over a 1.5-year period with scat collection

beginning on May 11th, 2021, and ending on November 9th, 2022. We
used radio telemetry to track wild gopher tortoises at The Richmond
Tract twice weekly. If an individual tortoise defecated during handling,
the fecal sample would be collected in a plastic bag and labeled with the
tortoise's ID number, location, and date encountered.
Scats were dissected with forceps over laminated graph paper (29.59

cm × 21.01 cm), containing 5 mm × 5 mm grids as a static background
reference to compare the relative contributions of food items to the total
fecal volume. All food items recovered from the fecal sample were
identified to the lowest taxonomic unit or qualified as their own cate-
gory (e.g., fur/hair was recovered from multiple species and subse-
quently categorized jointly). After dissection, fecal contents were spread
over the laminated graph paper and the relative contributions of each
food item to the total scat volume was visually estimated; an approach
widely used in dietary studies (Klare et al., 2011). One limitation of this
method, however, is that it assumes the volume of different foods re-
mains relatively consistent as fecal content. Considering the high
digestive efficiency of the gopher tortoise for plant matter (Bjorndal,
1987), this may result in greater representation of animal remains than
plant matter in feces, especially for fleshy fruits which have high water
content and are more easily digested (Coombe, 1976).
Food item contributions were quantified as proportions of either

0.01, 0.05, or in increments of 0.05 all the way to the total scat volume
of 1.00. If values <0.05 remained after quantifying the contributions of
all food items, this amount was allocated to the most abundant food

category from the sample. Of all the plant species consumed, only seeds
and undigested pulp from endozoochorous (fleshy-fruited) species were
considered as “fruit” in the sample (Ridley, 1930; Van der Pijl, 1982).
While running oak (Quercus pumila) fruits (i.e., acorns) lack a fleshy
mesocarp, we included them in the Fleshy Fruit category since acorns
are usually sought after for consumption by turtles (Carlson et al., 2003;
Elbers and Moll, 2011).

2.3.2. Aggregating food categories
Food items were ultimately aggregated into the following five

functional food categories due to their distinct importance in gopher
tortoise diets (Bjorndal, 1987; MacDonald and Mushinsky, 1988; Ashton
and Ashton, 2008; Moore and Dornburg, 2014; Figueroa et al., 2021):

1. Grasses were all members of the plant family Poaceae.
2. Legumes were all members of the plant family Fabaceae.
3. Other Plantswere an aggregation of all other plant material that did
not qualify as Legumes or Grasses yet were part of the vegetative
aspect of the tortoise diet.

4. Fleshy Fruit represents all endozoochorous fruits consumed by go-
pher tortoises, following dispersal syndromes from classical litera-
ture in seed dispersal ecology (Ridley, 1930; Van der Pijl, 1982).

5. Lastly, the Animals category captures all material that is of animal
origin (e.g., snail shells, eggshells, bone, and mammal fur).

The motive for aggregating food items in this way rather than using
the taxonomic classification of each food item was to reduce the
dimensionality of the dataset while maintaining enough resolution to
examine how different functional groups contribute to shifts in dietary
composition as well as individual specialization (Newsome et al., 2015).

Fig. 1. Our study site, Zoo Miami, lies on the largest expanse of pine rockland habitat outside of Everglades National Park, known as The Richmond Tract in Miami-
Dade County, Florida, USA.
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2.4. Statistical analysis

All statistical analyses were carried out in R version 3.3.0 (R Core
Team, 2022).

2.4.1. Correspondence analysis to characterize spatiotemporal shifts in
dietary composition
To quantify whether and how dietary composition varied between

the wet and dry seasons, we performed a Correspondence Analysis in the
easyCODA package (Greenacre, 2017, 2019). We decided on a Corre-
spondence Analysis due to the compositional nature of our dataset,
wherein each variable is proportionally scaled relative to the others,
summing to a constant (usually one). This characteristic of composi-
tional data presents unique challenges, as traditional statistical methods
like PCA or NMDS, which assume independence and unboundedness
among variables, might not effectively capture the inherent de-
pendencies and ratios between components. CA, however, is specifically
designed for handling such data. It treats the rows and columns of the
contingency table as profiles, thus facilitating a more appropriate
analysis of how dietary compositions are associated relative to each
other. This multivariate analysis pinpoints which food categories
contribute most to the composition of fecal samples across seasons,
allowing us to gauge how food categories contribute to observed shifts in
diet, and potentially individual consistency and specialization.
We performed the Correspondence Analysis to visualize how diets

varied seasonally and then overlayed vectors that illustrate the magni-
tude of influence for each of the five food categories on the diet
composition. Lastly, we drew 95% confidence ellipses for each level of
season, ultimately resulting in a Discriminant Correspondence Analysis.
We quantified the influence of each food category on the total dietary
composition by calculating the inertia captured by each in the Corre-
spondence Analysis.
After the Correspondence Analysis, we used the vegan package to

perform Permutational Analyses of Variance (PERMANOVA) on the
Bray-Curtis dissimilarity matrix of the original dataset (Oksanen et al.,
2022). This allowed us to assess significant differences in the population
diet composition between seasons.

2.4.2. Bayesian hierarchical modeling
To quantify temporal diet consistency and inter-individual diet

specialization, we employed the Bayesian hierarchical modeling
framework implemented by Coblentz et al. (2017) in the rjags package
(Plummer et al., 2016). This approach models the proportions in each of
the food categories within each sample and at higher hierarchical levels
such as individuals and populations. Briefly, the proportions of each
food category in the diet samples are modeled following a multinomial
distribution which required scaling the proportions to lie between 0 and
100. The sample proportions are then assumed to follow a Dirichlet
distribution at the next highest hierarchical level (here for example the
individual from which the sample was taken) (see Coblentz et al., 2017
for modeling details).

3. Calculation

3.1. Quantifying individual consistency and specialization

To calculate temporal diet consistency and inter-individual diet
specialization, we specified a Bayesian hierarchical model with samples
nested within the individuals of origin. We then calculated the Propor-
tional Similarity of samples (ICsi ), which describes how similar the
composition of a sample s is to the mean of all samples provided by
individual i:

ICsi = 1 − 0.5
∑

j

⃒
⃒
⃒pij − qij

⃒
⃒
⃒ (1)

where pij is the contribution of food item j in a sample of individual i,
while qij is the contribution of food item j in the overall diet of individual
i (i.e., the mean of all individual i's samples), as long as the individual
provided more than one fecal sample in the dataset.
To quantify the amount of temporal diet consistency in the popula-

tion, we first calculated the mean ICsi from all the samples belonging to
individual i (Nsi ) [Eq. (2)]. We refer to this metric as Individual Con-
sistency (ICi).

ICi =

∑

si

(
ICsi

)

Nsi
(2)

An ICi closer to 0.00 indicates lower similarity between an in-
dividual's fecal samples and its overall dietary composition. On the other
hand, an ICi closer to 1.00 indicates that samples are closer to the overall
dietary composition of individual i, hence a more consistent diet.
For inter-individual diet specialization, we calculated the sample-

level proportional similarity to the population diet (ISsi ), which quan-
tifies how similar an individual's samples are to the population diet [Eq.
(3)].

ISsi = 1 − 0.5
∑

j

⃒
⃒
⃒pij − qj

⃒
⃒
⃒ (3)

where pij is the contribution of food item j in a sample of individual i and
qj is the contribution of food item j to the diet of the whole population.
Like for ICsi , ISsivalues were only calculated for individuals that provided
more than one fecal sample.
Additionally, we estimated Individual Specialization (ISi) like in ICi

[Eq. (4)], by calculating the mean of all ISsi values across the samples
provided by each tortoise (Nsi ).

ISi =

∑

si

(
ISsi

)

Nsi
(4)

An ISi value closer to 0.00 indicates lower similarity between an
individual's samples and the whole population whereas a value closer to
1.00 indicates higher similarity between individual's samples and the
whole population.
To calculate the ICi and ISi values of all individuals, we ran the model

on the full dataset and extracted the posterior draws for all individuals
(14 individuals; 180 fecal samples total). We then plotted the posterior
draws with the 95% Credible Intervals for each individual. This
approach allowed us to robustly quantify the temporal consistency in
diet of various individuals as well as their degree of individual resource
use specialization (see Bolnick et al. 2002; Zaccarelli et al. 2013 and
Coblentz et al. 2017 for more detail on the calculation of these metrics).

3.2. Quantifying temporal differences in diet consistency and
specialization

After quantifying individual consistency and specialization for each
tortoise in the population, we then ran the same model specification on
two subsets of the full dataset: one containing only wet season samples
and one containing only dry season samples. We subsequently extracted
the ICsi and ISsi values for all samples in each season and plotted their
posterior estimates together. This allowed us to examine seasonal dif-
ferences in the sample-level measures of diet consistency and speciali-
zation, respectively.
To examine differences in ICsi and ISsi across seasons, we calculated

the posterior distribution of the difference between wet and dry season
estimates of both ICsi and ISsi . This allowed us to quantify the differences
in sample-level diet consistency and specialization between seasons. For
all estimates, we calculated the Bayesian probability of direction (PD)
from the posterior distribution (Makowski et al., 2019). PD can be
interpreted as the probability that the median of the estimate is strictly
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positive or negative, depending on which is most probable. This was
done by dividing the number of posterior draws demonstrating the effect
of interest (i.e., negative or positive values indicating the directionality
of the effect), by the total number of posterior draws.

3.3. GLMM for influence of frugivory on diet specialization

Lastly, we used the Bayesian brms package (Bürkner, 2017) to
construct a Generalized Linear Mixed Model (GLMM) which modeled
posterior estimates of ICsi and ISsi as our response variables, to test if
frugivory drives temporal diet inconsistency and inter-individual diet
specialization, respectively. To incorporate uncertainty associated with
the joint posterior distribution from the Bayesian analysis, we drew 30
samples from the posterior distribution for each sample and then used
these draws as the response variable in the GLMM. We attempted to use
the full posterior distribution for each sample but since the resulting
data frame included over one million data points, it was impractical to
execute the analysis with our computational power.
Given that ICsi and ISsi lie between 0.00 and 1.00, we specified a beta

error distribution for both models with an uninformative prior. The
estimates for ICsi and ISsi used as the response variable came from the
two subsets of the full dataset used to calculate sample-level consistency
and specialization in the wet and dry seasons. We specified the pro-
portion of fecal volume comprised of fruit, the season in which samples
were collected, and their interaction as our fixed effects. We then
included a random effect to account for differences among individuals,
inherently capturing spatial differences due to the nested nature of the
tortoises across the three sites in addition to demographic-specific
variation. Finally, we plotted the relationship between frugivory and
individual consistency, as well as specialization, while stratifying by
season to account for seasonal differences in the relationship.

4. Results

The Correspondence Analysis subsequently demonstrated that fruit
consumption primarily explained the differences in dietary composition
between the dry and wet seasons (Fig. 4), with fruit containing the
highest inertia value of 0.54 compared to the other food categories
which all fell below 0.35 (Table 1). PERMANOVA results confirmed that
diets differed significantly in their composition in the wet season
compared to the dry season (F= 17.859; df1= 1; df2= 205; p< 0.0001).
Individual tortoises varied greatly in their consistency (ICi) and

specialization (ISi) with individuals who were more inconsistent in their
foraging patterns also more specialized when compared to the popula-
tion (Fig. 2). When plotting ICsi and ISsi values by season, a clear sea-
sonal pattern in both diet consistency and specialization emerged
(Fig. 3). In the wet season, diets were much more inconsistent and
specialized than in the dry season, with a median difference in consis-
tency of − 0.11, and in specialization of − 0.13, with neither of the

credible intervals overlapping with 0.00. The PD estimate for the wet
and dry season contrasts in both consistency and specialization was
100%. This indicated a high probability that diets in the wet season are
both more inconsistent and specialized than in the dry season.
Modeling the relationship between fruit consumption and both

sample-level diet consistency and specialization revealed a distinct
negative relationship (Fig. 5). As diets became more frugivorous, they
also exhibited greater inconsistency within an individual's fecal samples
and higher specialization relative to the population (Table 2). Among
the fixed effects and their interactions in both models, seasonality
emerged as the predominant influence. The influence of seasonality was
unequivocal in both models, with a PD value of 100%, verifying a sea-
sonal effect. In the model for sample-level diet consistency, frugivory
exhibited a PD value of 95.93%, indicating a high probability that
increased frugivory leads to greater temporal diet inconsistency,
regardless of seasonality. Similarly, in the diet specialization model, the
PD value for frugivory was 92.83%. Though highly probably, the
interaction between seasonality and frugivory was less pronounced in
the sample-level diet consistency and diet specialization models, with
PD values of 93.99% and 88.83%, respectively. These findings under-
score the critical role of frugivory in driving dietary variability and
specialization, even when accounting for individual and seasonal vari-
ations as controlled through our model's random effects.

5. Discussion

In the present study, we explored the temporal dimension of diet
specialization (Novak and Tinker, 2015; Rosenblatt et al., 2015), by
comparing how different individual diets were intra-annually, finding
that in the two distinct south Florida seasons, wet and dry, there were
marked differences in temporal diet consistency and inter-individual
specialization. We documented substantial variation in the individual-
level estimates of dietary consistency (ICi) and specialization (ISi),
where individuals with less consistent diets also demonstrated more
specialized diets when compared to the population. We then observed
inter-seasonal differences in the sample-level measures of dietary con-
sistency (ICsi ) and specialization (ISsi ), with less consistent and more
specialized diets in the wet season than dry season, confirming that
specialization is greater with increased precipitation as has been found
in desert tortoises (Gopherus agassizii) (Murray and Wolf, 2013).
Dietary composition itself also varied inter-seasonally, with frugi-

vory contributing most to this shift. Modeling sample-level diet consis-
tency and specialization as a function of the interaction between season
and frugivory – while accounting for individual-tortoise variation –
revealed that frugivory is a major driver of both levels of diet speciali-
zation (i.e., temporal diet consistency and inter-individual diet special-
ization). As frugivory increased, irrespective of season, so did the
variability of an individual's fecal samples when compared to its total
diet, as well as how specialized the individual was when compared to the
population.
As fruit availability increases intra-annually with precipitation in

south Florida (Snyder et al., 1990; Lodge, 2017; Flora of North America
Editorial Committee, eds. 1993+, 2023), gopher tortoises increasingly
seek out this temporally limited resource which then facilitates diet
specialization. Previous studies on another seasonal frugivore have
found that the folivorous western lowland gorilla (Gorilla gorilla gorilla)
becomes more frugivorous intra-annually by tracking the spatiotem-
poral availability of fleshy fruits (Remis, 1997; Robira et al., 2023). This
seasonal tracking of fruits allows the gorillas to incorporate more
digestible energy and a greater abundance of macronutrients into their
diet (Masi et al., 2015). With the western lowland gorilla being a hindgut
fermenter (Remis and Dierenfeld, 2004) – like the gopher tortoise
(Bjorndal, 1987) – it is able to extract a great amount of energy from
fibrous food items. Although adequate energy could be obtained without
fruit, the digestive similarities between the gorilla and the gopher tor-
toise suggest that the readily available carbohydrates and digestible

Table 1
Summary table for the Correspondence Analysis. Food categories are ordered
from highest to lowest Inertia, which is the amount of variance captured by the
food category. “Mass” refers to the total frequency of observations associated
with a category while “ChiDist” measures the chi-squared dissimilarity between
categories based on observed and expected frequencies, aiding in the calculation
of distances in the low-dimensional representation of the data. “Dim. 1” and
“Dim. 2” are the principal coordinate values for each category.

Seasonal Correspondence Analysis Results

Food
Category

Mass ChiDist Inertia Dim. 1 Dim. 2

Fruit 0.101836 2.293578 0.535707 − 2.939796 − 0.40552
Animals 0.037826 2.954706 0.330233 0.18281 2.347988
Legumes 0.14599 1.498334 0.327749 0.010057 2.021206
Other Plants 0.067923 1.890907 0.24286 0.374998 − 0.047709
Grasses 0.646425 0.491206 0.155972 0.410755 − 0.524971
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energy in fruit could allow for more time in the gopher tortoise's activity
budget to copulate (Johnson et al., 2007), defend or expand home
ranges (McRae et al., 1981; Masi et al., 2009), and burrow during pe-
riods of high fruit consumption (Eubanks et al., 2003). Interestingly, the
timing of these documented behaviors in the gopher tortoise coincides
with greater fruit consumption and specialization exhibited by the in-
dividuals of this study.
These results demonstrate that the gopher tortoise engages in

opportunistic frugivory that facilitates diet specialization through a
decrease in temporal diet consistency. This notion suggests that rather
than falling in any one category between herbivory or frugivory (van
Leeuwen et al., 2022), species – or individuals – may shift their diets to
increase their consumption of temporally-limited resources such as fruit
(Abrahms et al., 2021), thereby allowing them to specialize their diets.
As demonstrated here, individuals in the population differentially
engage in frugivory during the wet season. If all individuals engaged in
the same degree of fruit consumption, there would be no individual

specialization sensu Bolnick et al. (2003), but rather a uniform seasonal
shift in diet where all individuals would exhibit the same feeding habits.
A likely explanation is that peaks in gopher tortoise activity patterns

coincides with the wet season in the south Florida (Douglass and Layne,
1978; Lodge, 2017). In this time, female tortoises are usually gravid with
eggs and juvenile tortoises experience increased growth rates (Rostal
et al., 2014). Between age classes as well as between males and females,
there are different energetic and nutritional requirements which are met
by the increased consumption of legumes by growing juveniles and
animal material by gravid females (Wilson et al., 1994; Moore and
Dornburg, 2014). These differences in energetic and nutritional re-
quirements among individuals at the intra-annual scale may explain the
marked differences between individuals and their dietary habits. The
ramifications of these findings are that individuals may engage in
different degrees of frugivory and differentially participate seed
dispersal as they become increasingly specialized, suggesting that con-
specifics can provide unique seed dispersal services through diet

Fig. 2. Individual-level measures of diet consistency (ICi; top panel) and specialization (ISi; bottom panel) across all tortoises in the study that provided more than
one fecal sample. Values closer to 0.00 indicate greater inconsistency/specialization whereas values closer to 1.00 indicate greater consistency and less specialization.

Fig. 3. Density plots illustrating seasonal shifts in sample-level measures of diet consistency (ICsi ; top panel) and specialization (ISsi ; bottom panel). Values closer to
0.00 indicate greater inconsistency/specialization whereas values closer to 1.00 indicate greater consistency and less specialization.
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specialization rather than through morphological or behavioral differ-
ences alone (Zwolak, 2018; Zwolak and Sih, 2020), although they may
be related.
By unraveling the temporal differences in individual diet speciali-

zation that is driven by frugivory, this research contributes to our un-
derstanding of the mechanisms shaping ecological dynamics at the
intraspecific level that can subsequently influence community-level in-
teractions such as frugivory and seed dispersal (Zwolak, 2018; Marques
Dracxler and Kissling, 2022; van Leeuwen et al., 2022). Such insights
have implications for conservation and management efforts, as they can
identify vulnerable populations lacking the appropriate resource di-
versity for their maintenance and can inform the ways in which habitat

management can facilitate their persistence. Moreover, a comprehensive
understanding of individual specialization provides a foundation for
predicting responses to environmental perturbations and enhances our
ability to conserve biodiversity in the face of global change. We
encourage future studies that quantify how the consumption of re-
sources that facilitate diet specialization, such as frugivory, varies
temporally and what the subsequent implications are for the seed
dispersal services provided.
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individual-level resource specialization. Ecology 83, 2936–2941.
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